Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Zhongguo Bingdubing Zazhi = Chinese Journal of Viral Diseases ; 13(2):115, 2023.
Article in English | ProQuest Central | ID: covidwho-2320640

ABSTRACT

Objective To develop a novel gold immunochromatographic double antibody sandwich assay for the detection of SARS-CoV-2 antigen, and to evaluate the performance of major reagents. Methods Potassium carbonate, large colloidal gold and SARS-CoV-2 antibody were used to prepare colloidal gold antibody markers, SARS-CoV-2 antibody concentration was optimized to prepare the binding pad, SARS-CoV-2 antibody and goat anti-mouse IgG were coated on nitrocellulose membrane as detection line and quality control line, according to the process requirements to assembly the assay. The minimum detection limit, cross-reactivity, accelerated stability test and clinical evaluation of the antigen detection reagent were determined. Results The minimum detection limit of SARS-CoV-2 inactivated virus was 3. 3×10~2 TCID50/ml, and no cross-reaction was found in the samples containing 10 common pathogens. The results of 37 °C high temperature accelerated test for 28 d showed high stability of the reagent. The sensitivity, specificity and total coincidence rate were 92. 00%, 100. 00% and 98. 67% and the Kappa value of concordance test was 0. 939, P<0. 01. Conclusion The developed antigen detection assay has high sensitivity and specificity, which is also simple to operate in a short time. It can be used as a rapid detection method for large-scale screening of novel coronavirus.

2.
Adv Healthc Mater ; : e2202921, 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2313602

ABSTRACT

The delivery of nucleic acid vaccine to stimulate host immune responses against Coronavirus disease 2019 shows promise. However, nucleic acid vaccines have drawbacks, including rapid clearance and poor cellular uptake, that limit their therapeutic potential. Microrobots can be engineered to sustain vaccine release and further control the interactions with immune cells that are vital for robust vaccination. Here, the 3D fabrication of biocompatible and biodegradable microrobots via the two-photon polymerization of gelatin methacryloyl (GelMA) and their proof-of-concept application for DNA vaccine delivery is reported. Programmed degradation and drug release by varying the local exposure dose in 3D laser lithography and further functionalized the GelMA microspheres with polyethyleneimine for DNA vaccine delivery to dendritic cell and primary cells is demonstrated. In mice, the DNA vaccine delivered by functionalized microspheres elicited fast, enhanced, and durable antigen expression, which may lead to prolonged protection. Furthermore, we demonstrated the maneuverability of microrobots by fabricating GelMA microspheres on magnetic skeletons. In conclusion, GelMA microrobots may provide an efficient vaccination strategy by controlling the expression duration of DNA vaccines.

3.
Genes Dis ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2320929

ABSTRACT

Inactivated COVID-19 vaccines have been widely used to vaccinate the Chinese population. However, limited literature exists to explore the effect of obesity on the humoral and cellular immune response to these vaccines. In this study, 132 high BMI (Body mass index) (obesity and overweight, BMI ≥ 24 kg/m2) and 82 normal BMI (BMI < 24 kg/m2) participants were enrolled. Adverse events (AEs), Spike receptor-binding domain IgG antibody (anti-RBD-IgG), neutralizing antibodies (NAbs), and specific B-cell and T-cell responses were evaluated 21-105 days after full-course inactivated COVID-19 vaccination. The overall incidence of adverse events (AEs) was similar in individuals with and without obesity/overweight. No serious vaccine-related AEs occurred. Individuals with obesity/overweight had a reduced seropositivity rate of NAbs compared to those with normal BMI. Anti-RBD-IgG and NAbs titers in the high BMI group were significantly lower than those in the normal BMI group. The frequencies of RBD-specific memory B cells (MBCs) and the numbers of spike-specific TNF-α+ spot-forming cells (SFCs) in individuals with obesity/overweight were reduced compared with those noted in individuals without obesity/overweight. A similar trend of weakened humoral responses was also observed in individuals with central obesity. Our study results suggested that inactivated COVID-19 vaccines were safe and well tolerated but induced poor humoral and cellular immune responses in Chinese individuals with obesity/overweight.

4.
EBioMedicine ; 92: 104574, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2308166

ABSTRACT

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Subject(s)
COVID-19 , Carrier Proteins , Cricetinae , Humans , Mice , Rats , Animals , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Australia , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral
5.
J Med Virol ; 95(4): e28730, 2023 04.
Article in English | MEDLINE | ID: covidwho-2299166

ABSTRACT

People living with HIV (PLWH) have poor outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); vaccination reduces the associated mortality. The humoral immune response dynamics after booster inactivated vaccinations in PLWH remain unclear. In this longitudinal observational study, 100 PLWH after primary inactivated SARS-CoV-2 vaccination were consecutively recruited and followed up. After booster vaccination (BV), neutralizing antibodies (NAbs) were detected at 1 month from all the PLWH, and the titer increased sixfold compared to that associated with the primary vaccination (PV), similar to that in healthy controls after BV. The NAbs titer declined over time after BV, but remained higher at 6 months than after PV. The NAbs response was elevated after BV with CD4 count <200 cells/µL, it was the poorest among the different CD4 cell count subgroups. Similar results were observed for anti-RBD-IgG responses. Moreover, RBD-specific MBCs were significantly elevated after BV in PLWH. No serious AEs were observed after BV in PLWH. In conclusion, booster inactivated SARS-CoV-2 vaccination is well tolerated and can elicit robust and durable humoral responses in PLWH. PLWH may benefit from a third dose of the inactivated vaccine.


Subject(s)
COVID-19 , HIV Infections , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Neutralizing , Vaccination , Antibodies, Viral
6.
Nat Commun ; 14(1): 2081, 2023 04 12.
Article in English | MEDLINE | ID: covidwho-2294153

ABSTRACT

Current available vaccines for COVID-19 are effective in reducing severe diseases and deaths caused by SARS-CoV-2 infection but less optimal in preventing infection. Next-generation vaccines which are able to induce mucosal immunity in the upper respiratory to prevent or reduce infections caused by highly transmissible variants of SARS-CoV-2 are urgently needed. We have developed an intranasal vaccine candidate based on a live attenuated influenza virus (LAIV) with a deleted NS1 gene that encodes cell surface expression of the receptor-binding-domain (RBD) of the SARS-CoV-2 spike protein, designated DelNS1-RBD4N-DAF. Immune responses and protection against virus challenge following intranasal administration of DelNS1-RBD4N-DAF vaccines were analyzed in mice and compared with intramuscular injection of the BioNTech BNT162b2 mRNA vaccine in hamsters. DelNS1-RBD4N-DAF LAIVs induced high levels of neutralizing antibodies against various SARS-CoV-2 variants in mice and hamsters and stimulated robust T cell responses in mice. Notably, vaccination with DelNS1-RBD4N-DAF LAIVs, but not BNT162b2 mRNA, prevented replication of SARS-CoV-2 variants, including Delta and Omicron BA.2, in the respiratory tissues of animals. The DelNS1-RBD4N-DAF LAIV system warrants further evaluation in humans for the control of SARS-CoV-2 transmission and, more significantly, for creating dual function vaccines against both influenza and COVID-19 for use in annual vaccination strategies.


Subject(s)
COVID-19 , Influenza Vaccines , Orthomyxoviridae , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Administration, Intranasal , COVID-19 Vaccines , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , BNT162 Vaccine , Antibodies, Viral
7.
Vaccines (Basel) ; 11(4)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2306446

ABSTRACT

An intranasal COVID-19 vaccine, DelNS1-based RBD vaccines composed of H1N1 subtype (DelNS1-nCoV-RBD LAIV) was developed to evaluate the safety and immunogenicity in healthy adults. We conducted a phase 1 randomized, double-blinded, placebo-controlled study on healthy participants, age 18-55 and COVID-19 vaccines naïve, between March and September 2021. Participants were enrolled and randomly assigned (2:2:1) into the low and high dose DelNS1-nCoV-RBD LAIV manufactured in chicken embryonated eggs or placebo groups. The low and high-dose vaccine were composed of 1 × 107 EID50/ dose and 1 × 107.7 EID50/ dose in 0.2 mL respectively. The placebo vaccine was composed of inert excipients/dose in 0.2 mL. Recruited participants were administered the vaccine intranasally on day 0 and day 28. The primary end-point was the safety of the vaccine. The secondary endpoints included cellular, humoral, and mucosal immune responses post-vaccination at pre-specified time-points. The cellular response was measured by the T-cell ELISpot assay. The humoral response was measured by the serum anti-RBD IgG and live-virus neutralizing antibody against SARS-CoV-2. The saliva total Ig antibody responses in mucosal secretion against SARS-CoV-2 RBD was also assessed. Twenty-nine healthy Chinese participants were vaccinated (low-dose: 11; high-dose: 12 and placebo: 6). The median age was 26 years. Twenty participants (69%) were male. No participant was discontinued due to an adverse event or COVID-19 infection during the clinical trial. There was no significant difference in the incidence of adverse events (p = 0.620). For the T-cell response elicited after full vaccination, the positive PBMC in the high-dose group increased to 12.5 SFU/106 PMBC (day 42) from 0 (baseline), while it increased to 5 SFU/106 PBMC (day 42) from 2.5 SFU/106 PBMC (baseline) in the placebo group. The high-dose group showed a slightly higher level of mucosal Ig than the control group after receiving two doses of the vaccine (day 31, 0.24 vs. 0.21, p = 0.046; day 56 0.31 vs. 0.15, p = 0.45). There was no difference in the T-cell and saliva Ig response between the low-dose and placebo groups. The serum anti-RBD IgG and live virus neutralizing antibody against SARS-CoV-2 were undetectable in all samples. The high-dose intranasal DelNS1-nCoV-RBD LAIV is safe with moderate mucosal immunogenicity. A phase-2 booster trial with a two-dose regimen of the high-dose intranasal DelNS1-nCoV-RBD LAIV is warranted.

8.
Microchem J ; 182: 107866, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2293137

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) is a cluster of ß coronaviruses. The 2019 coronavirus disease (COVID-19) caused by SARS-COV-2 is emerging as a global pandemic. Thus, early diagnosis of SARS-COV-2 is essential to prevent severe outbreaks of the disease. In this experiment, a novel label-free photoelectrochemical (PEC) immunosensor was obtained based on silver sulfide (Ag2S) sensitized titanium dioxide@bismuth tungstate (TiO2@Bi2WO6) nanocomposite for quantitative detection of SARS-COV-2 nucleocapsid protein. The constructed TiO2@Bi2WO6 hollow microspheres had large specific surface area and could produce high photocurrent intensity under visible light illumination. Ag2S was in-situ grown on the surface of thioglycolic acid (TGA) modified TiO2@Bi2WO6. In particular, TiO2@Bi2WO6 and Ag2S formed a good energy level match, which could effectively enhance the photocurrent conversion efficiency and strength the photocurrent response. Ascorbic acid (AA) acted as an effective electron donor to effectively eliminate photogenerated holes. Under optimal experimental conditions, the constructed immunosensor presented a supersensitive response to SARS-COV-2 nucleocapsid protein, with a desirable linear relationship ranged from 0.001 to 50 ng/mL for nucleocapsid protein and a lower detection limit of 0.38 pg/mL. The fabricated sensor exhibited a wide linear range, excellent selectivity, specificity and stability, which provided a valuable referential idea for the detection of SARS-COV-2.

9.
Lancet Reg Health West Pac ; 32: 100660, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2288961

ABSTRACT

Background: The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the model city of universal masking of the world, has resulted in a major public health crisis. Although the third vaccination resulted in strong boosting of neutralization antibody, vaccine efficacy and correlate of immune protection against the major circulating Omicron BA.2 remain to be investigated. Methods: We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 470 public servants who had received different SARS-CoV-2 vaccine regimens including two-dose BNT162b2 (2 × BNT, n = 169), three-dose BNT162b2 (3 × BNT, n = 168), two-dose CoronaVac (2 × CorV, n = 34), three-dose CoronaVac (3 × CorV, n = 67) and third-dose BNT162b2 following 2 × CorV (2 × CorV+1BNT, n = 32). Humoral and cellular immune responses after three-dose vaccination were further characterized and correlated with clinical characteristics of BA.2 infection. Findings: During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose vaccination provided significant protection with lower incidence rates of breakthrough infections (2 × BNT 46.2% vs 3 × BNT 13.1%, p < 0.0001; 2 × CorV 44.1% vs 3 × CorV 19.4%, p = 0.003). Investigation of immune responses on blood samples derived from 90 subjects in three-dose vaccination cohorts collected before the BA.2 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory B cells and Omicron cross-reactive T cell responses, which correlated with reduced frequencies of breakthrough infections and disease severity rather than with types of vaccines. Moreover, the frequency of S-specific activated memory B cells was significantly lower in infected vaccinees than uninfected vaccinees before vaccine-breakthrough infection whereas IFN-γ+ CD4 T cells were negatively associated with age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested. Interpretation: Our results imply that the timely third vaccination and immune responses are likely required for vaccine-mediated protection against Omicron BA.2 pandemic. Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection in vaccinees with prior 3 doses of CoronaVac or BNT162b2 may reduce the risk of infection against ongoing BA.2.12.1 and BA.4/5. Funding: Hong Kong Research Grants Council Collaborative Research Fund, Health and Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology Program, the Health@InnoHK, Innovation and Technology Commission of Hong Kong, China, National Program on Key Research Project, Emergency Key Program of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and the Hong Kong Theme-Based Research Scheme.

10.
J Med Virol ; 95(4): e28695, 2023 04.
Article in English | MEDLINE | ID: covidwho-2254691

ABSTRACT

Given the pandemic of severe acute respiratory syndrome coronavirus 2 Omicron variants, booster vaccination (BV) using inactivated virus vaccines (the third dose) has been implemented in China. However, the immune responses after BV, especially those against Omicron, in patients with chronic hepatitis B virus (HBV) infection (CHB) are unclear. In this prospective longitudinal study, 114 patients with CHB and 68 healthy controls (HCs) were recruited after receiving inactivated vaccination. The anti-receptor-binding domain (RBD) immunoglobulin G (IgG), neutralizing antibodies (NAbs), neutralization against Omicron (BA2.12.1, BA.4/5), and specific B/T cells were evaluated. In patients, anti-RBD IgG was elevated significantly after BV; the titers were as high as those in HCs. Similar results were obtained for the NAbs. However, compared with that against wild type (WT), the neutralization against Omicron was compromised after BV. The frequency of RBD+ atypical memory B cells increased, but spike-specific cluster of differentiation 4+ /8+ T cells remained unchanged after BV. Moreover, no serious adverse events or HBV reactivation were observed after BV. These results suggest that BV significantly enhanced antibody responses against WT; however, it resulted in compromised antibody responses against Omicron in patients with CHB. Hence, new all-in-one vaccines and optimal vaccination strategies should be studied promptly.


Subject(s)
COVID-19 , Hepatitis B, Chronic , Humans , Longitudinal Studies , Prospective Studies , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
11.
Viruses ; 15(3)2023 03 06.
Article in English | MEDLINE | ID: covidwho-2253490

ABSTRACT

The emergence of new immune-evasive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and subvariants outpaces the development of vaccines specific against the dominant circulating strains. In terms of the only accepted immune correlate of protection, the inactivated whole-virion vaccine using wild-type SARS-CoV-2 spike induces a much lower serum neutralizing antibody titre against the Omicron subvariants. Since the inactivated vaccine given intramuscularly is one of the most commonly used coronavirus disease 2019 (COVID-19) vaccines in developing regions, we tested the hypothesis that intranasal boosting after intramuscular priming would provide a broader level of protection. Here, we showed that one or two intranasal boosts with the Fc-linked trimeric spike receptor-binding domain from wild-type SARS-CoV-2 can induce significantly higher serum neutralizing antibodies against wild-type SARS-CoV-2 and the Omicron subvariants, including BA.5.2 and XBB.1, with a lower titre in the bronchoalveolar lavage of vaccinated Balb/c mice than vaccination with four intramuscular doses of inactivated whole virion vaccine. The intranasally vaccinated K18-hACE2-transgenic mice also had a significantly lower nasal turbinate viral load, suggesting a better protection of the upper airway, which is the predilected site of infection by Omicron subvariants. This intramuscular priming and intranasal boosting approach that achieves broader cross-protection against Omicron variants and subvariants may lengthen the interval required for changing the vaccine immunogen from months to years.


Subject(s)
COVID-19 , Turbinates , Mice , Animals , SARS-CoV-2/genetics , Viral Load , COVID-19/prevention & control , Mice, Transgenic , Antibodies, Neutralizing , COVID-19 Vaccines , Mice, Inbred BALB C , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
13.
Emerg Microbes Infect ; : 1-52, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2242917

ABSTRACT

Increasing spread by SARS-CoV-2 Omicron variants challenges existing vaccines and broadly reactive neutralizing antibodies (bNAbs) against COVID-19. Here we determine the diversity, potency, breadth and structural insights of bNAbs derived from memory B cells of BNT162b2-vaccinee after homogeneous Omicron BA.1 breakthrough infection. The infection activates diverse memory B cell clonotypes for generating potent class I/II or III bNAbs with new epitopes mapped to receptor-binding domain (RBD). The top eight bNAbs neutralize wildtype and BA.1 potently but display divergent IgH/IgL sequences and neuralization profiles against other variants of concern (VOCs). Two of them (P2D9 and P3E6) belonging to class III NAbs display comparable potency against BA.4/BA.5, although structural analysis reveals distinct modes of action. P3E6 neutralizes all variants tested through a unique bivalent interaction with two RBDs. Our findings provide new insights into hybrid immunity on BNT162b2-induced diverse memory B cells in response to Omicron breakthrough infection for generating diverse bNAbs with distinct structural basis.

14.
Virol J ; 20(1): 22, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2237118

ABSTRACT

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) have been reported to be more susceptible to 2019 novel coronavirus (2019-nCoV) and more likely to develop severe pneumonia. However, the safety and immunological responses of T2DM patients after receiving the inactivated vaccines are not quite definite. Therefore, we aimed to explore the safety, antibody responses, and B-cell immunity of T2DM patients who were vaccinated with inactivated coronavirus disease 2019 (COVID-19) vaccines. METHODS: Eighty-nine patients with T2DM and 100 healthy controls (HCs) were enrolled, all of whom had received two doses of full-course inactivated vaccines. At 21-105 days after full-course vaccines: first, the safety of the vaccines was assessed by questionnaires; second, the titers of anti-receptor binding domain IgG (anti-RBD-IgG) and neutralizing antibodies (NAbs) were measured; third, we detected the frequency of RBD-specific memory B cells (RBD-specific MBCs) to explore the cellular immunity of T2DM patients. RESULTS: The overall incidence of adverse events was similar between T2DM patients and HCs, and no serious adverse events were recorded in either group. Compared with HCs, significantly lower titers of anti-RBD-IgG (p = 0.004) and NAbs (p = 0.013) were observed in T2DM patients. Moreover, the frequency of RBD-specific MBCs was lower in T2DM patients than in HCs (p = 0.027). Among the 89 T2DM patients, individuals with lower body mass index (BMI) had higher antibody titers (anti-RBD-IgG: p = 0.009; NAbs: p = 0.084). Furthermore, we found that sex, BMI, and days after vaccination were correlated with antibody titers. CONCLUSIONS: Inactivated COVID-19 vaccines were safe in patients with T2DM, but the antibody responses and memory B-cell responses were significantly decreased compared to HCs. TRIAL REGISTRATION NUMBER AND DATE: NCT05043246. September 14, 2021. (Clinical Trials.gov).


Subject(s)
COVID-19 Vaccines , COVID-19 , Diabetes Mellitus, Type 2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunoglobulin G , SARS-CoV-2 , Vaccines, Inactivated , Case-Control Studies
15.
Front Immunol ; 13: 988004, 2022.
Article in English | MEDLINE | ID: covidwho-2080152

ABSTRACT

The antibody and B cell responses after inactivated SARS-CoV-2 vaccination have not been well documented in patients with autoimmune liver disease (AILD). Therefore, we conducted a prospective observational study that included AILD patients and healthy participants as controls between July 1, 2021, and September 30, 2021, at the Second Affiliated Hospital of Chongqing Medical University. All adverse events (AEs) after the COVID-19 vaccination were recorded and graded. Immunoglobulin (Ig)-G antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (anti-RBD-IgG) and neutralizicadng antibodies (NAbs) were tested following full-course vaccination (BBIBP-CorV or CoronaVac). In addition, SARS-CoV-2-specific B cells were detected by flow cytometry. In total, 76 AILD patients and 136 healthy controls (HCs) were included. All AEs were mild and self-limiting, and the incidences were similar between the AILD and HCs. The seropositivity rates of anti-RBD-IgG and NAbs in AILD were 97.4% (100% in HCs, p = 0.13) and 63.2% (84.6% in HCs, p < 0.001), respectively. The titers of anti-RBD-IgG and NAbs were significantly lower in AILD patients than those in HCs. After adjusting for confounders, immunosuppressive therapy was an independent risk factor for low-level anti-RBD-IgG (adjusted odds ratio [aOR]: 4.7; 95% confidence interval [CI], 1.5-15.2; p = 0.01) and a reduced probability of NAbs seropositivity (aOR, 3.0; 95% CI, 1.0-8.9; p = 0.04) in AILD patients. However, regardless of immunosuppressants, the SARS-CoV-2-specific memory B cells responses were comparable between the AILD and HC groups. Our results suggest that inactivated SARS-CoV-2 vaccines (BBIBP-CorV and CoronaVac) are safe, but their immunogenicity is compromised in patients with AILD. Moreover, immunosuppressants are significantly associated with poor antibody responses to the SARS-CoV-2 vaccines. These results could inform physicians and policymakers about decisions on screening the populations at higher risk of poor antibody responses to SARS-CoV-2 vaccines and providing additional vaccinations in patients with AILD.


Subject(s)
Autoimmune Diseases , COVID-19 , Liver Diseases , Humans , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , Immunosuppressive Agents/adverse effects , Antibody Formation , Antibodies, Viral , Immunoglobulin G
16.
Cell Mol Immunol ; 19(11): 1302-1310, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2062196

ABSTRACT

Mutations in SARS-CoV-2 variants of concern (VOCs) have enhanced transmissibility and immune evasion with respect to current vaccines and neutralizing antibodies (NAbs). How naturally occurring spike mutations affect the infectivity and antigenicity of VOCs remains to be investigated. The entry efficiency of individual spike mutations was determined in vitro using pseudotyped viruses. BALB/c mice were immunized with 2-dose DNA vaccines encoding B.1.1.7, B.1.351, B.1.1.529  and their single mutations. Cellular and humoral immune responses were then compared to determine the impact of individual mutations on immunogenicity. In the B.1.1.7 lineage, Del69-70 and Del 144 in NTD, A570D and P681H in SD1 and S982A and D1118H in S2 significantly increased viral entry, whereas T716I resulted in a decrease. In the B.1.351 lineage, L18F and Del 242-244 in the NTD, K417N in the RBD and A701V in S2 also increased viral entry. S982A weakened the generation of binding antibodies. All sera showed reduced cross-neutralization activity against B.1.351, B.1.617.2 (Delta) and B.1.1.529 (Omicron BA.1). S982A, L18F, and Del 242-244 hindered the induction of cross-NAbs, whereas Del 69-70, Del144, R246I, and K417N showed the opposite effects. B.1.351 elicited adequate broad cross-NAbs against both B.1.351 and B.1.617.2. All immunogens tested, however, showed low neutralization against circulating B.1.1.529. In addition, T-cell responses were unlikely affected by mutations tested in the spike. We conclude that individual spike mutations influence viral infectivity and vaccine immunogenicity. Designing VOC-targeted vaccines is likely necessary to overcome immune evasion from current vaccines and neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , COVID-19/virology , Mice, Inbred BALB C , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
17.
Frontiers in psychology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2047100

ABSTRACT

Online education has advantages during COVID-19, but it also has problems related to hardware support and user experience. Focusing on teaching quality by discipline is an effective way to improve teaching quality in universities. To investigate the online education experience from the perspective of different academic disciplines, we evaluated 251,929 student questionnaires and 13,695 teacher questionnaires from 334 universities in China. The main finding was a difference in teaching preparation, experience, feedback, and improvement processes by disciplines. Teachers and students had obvious disciplinary differences in preparation, school support, and teaching constraints. However, disciplinary differences were minor for pedagogical issues such as participation, assignments, and grading, as well as for evaluation of platform technical support and views on the continuation of online learning. The research results analyzed the teaching psychology of teachers and students in different disciplines during the pandemic. Therefore, it explained the impact and role of discipline differences on students’ learning psychology during COVID-19. This research will benefit educators, researchers, and policy makers to help them with the improvement of online education.

18.
Clin Transl Med ; 12(9): e1025, 2022 09.
Article in English | MEDLINE | ID: covidwho-2027333

ABSTRACT

BACKGROUND: Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS: We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS: While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION: Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , B-Lymphocytes , COVID-19 Vaccines , Cytokines , Humans , Mitochondria , SARS-CoV-2 , Severity of Illness Index , Viral Vaccines/pharmacology
19.
Phytother Res ; 36(8): 3232-3247, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1976773

ABSTRACT

The current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs. Here, we report that the percolation extract of Spatholobus suberectus Dunn (SSP) is a broad-spectrum viral entry inhibitor against SARS-CoV-1/2 and other enveloped viruses. The viral inhibitory activities of the SSP were evaluated by using pseudotyped SARS-CoV-1 and 2, HIV-1ADA and HXB2 , and H5N1. SSP effectively inhibited viral entry and with EC50 values ranging from 3.6 to 5.1 µg/ml. Pre-treatment of pseudovirus or target cells with SSP showed consistent inhibitory activities with the respective EC50 value of 2.3 or 2.1 µg/ml. SSP blocked both SARS-CoV-2 spike glycoprotein and the host ACE2 receptor. In vivo studies indicated that there was no abnormal toxicity and behavior in long-term SSP treatment. Based on these findings, we concluded that SSP has the potential to be developed as a drug candidate for preventing and treating COVID-19 and other emerging enveloped viruses.


Subject(s)
COVID-19 Drug Treatment , Influenza A Virus, H5N1 Subtype , Antiviral Agents/pharmacology , Humans , Pandemics/prevention & control , SARS-CoV-2
20.
Immunother Adv ; 2(1): ltab027, 2022.
Article in English | MEDLINE | ID: covidwho-1973168

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been spreading worldwide since December 2019, resulting in the ongoing COVID-19 pandemic with 237 million infections and 4.8 million deaths by 11 October 2021. While there are great efforts of global vaccination, ending this pandemic has been challenged by issues of exceptionally high viral transmissibility, re-infection, vaccine-breakthrough infection, and immune escape variants of concern. Besides the record-breaking speed of vaccine research and development, antiviral drugs including SARS-CoV-2-specific human neutralizing antibodies (HuNAbs) have been actively explored for passive immunization. In support of HuNAb-based immunotherapy, passive immunization using convalescent patients' plasma has generated promising evidence on clinical benefits for both mild and severe COVID-19 patients. Since the source of convalescent plasma is limited, the discovery of broadly reactive HuNAbs may have significant impacts on the fight against the COVID-19 pandemic. In this review, therefore, we discuss the current technologies of gene cloning, modes of action, in vitro and in vivo potency and breadth, and clinical development for potent SARS-CoV-2-specific HuNAbs.

SELECTION OF CITATIONS
SEARCH DETAIL